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1 Introduction

Dispersal is an essential aspect of ecology. It is important because it affects population
interactions, biological invasions, and the geographical distributions of populations,
and their response to habitat fragmentation, among other things. The effects and evo-
lution of dispersal have been studied extensively by theoretical ecologists (Clobert
et al. 2001). The problem of understanding the evolution of dispersal strategies in spa-
tially heterogeneous but temporally constant environments has received considerable
attention (Averill et al. 2011; Cantrell et al. 2006, 2007a,b, 2008, 2010; Chen and Lou
2008; Chen et al. 2008; Cosner 2005; Cressman and Krivan 2006; Dockery et al. 1998;
Hambrock and Lou 2009; Hastings 1983; Holt and Barfield 2001; Kirkland et al. 2006;
Krivan et al. 2008; Lam 2011a,b; Lam and Ni 2010; McPeek and Holt 1992; Padrén
and Trevisan 2006). In this paper we will examine that question in the context of dis-
crete diffusion models. The corresponding problem in the case of spatial and temporal
variation was considered in Holt and McPeek (1996), Hutson et al. (2001), see also
Evans et al. (2011), Schreiber (2010, 2011), Schreiber and Li (201 1) for some recent
important progress in this direction, but we will not address that in the current paper.
An important distinction among dispersal strategies is whether they are conditional
(depending on environmental factors) or unconditional (effectively random, or at least
not based on response to the environment). We will see that when dispersal is favored
at all, conditional dispersal of a certain type is favored over unconditional dispersal.
Our results extend and refine previous work on that topic. We will take the viewpoint
of adaptive dynamics (Dieckmann 1997; Dieckmann and Law 1996; Diekmann 2003,
Geritz and Gyllenberg 2008; Geritz et al. 1998; Metz et al. 1996). An important idea
in adaptive dynamics is the idea of evolutionarily stable strategies (ESS). A strategy is
said to be evolutionarily stable if a population using it cannot be invaded by any small
population using a different strategy. A related but different idea is that of convergent
stable strategies (CSS). A strategy is convergent stable if small changes in nearby
strategies are only favored (i.e., able to invade a resident population) if they are closer
to the convergent stable strategy than the resident strategy. The key idea is whether
a small population of mutants using a new strategy can invade a resident population
using another strategy. Results from Averill et al. (2011), Cantrell et al. (2007a, 2010)
show that in some classes of dispersal strategies those that are evolutionarily or con-
vergent stable are those that lead to a distribution of the population which can be
described in terms of the ideal free distribution (IFD).

The ideal free distribution, introduced in Fretwell and Lucas (1970), is a descrip-
tion of how organisms should distribute themselves so that individuals optimize their
fitness, taking into account the presence of other individuals. The term “ideal free”
refers to the idea that such a distribution would be expected if individuals have com-
plete knowledge of their environment and are free to locate themselves wherever they
want, specifically under the assumption that the presence of other individuals influ-
ences fitness. In the context of modeling population dynamics with dispersal, the [FD
thus corresponds to an equilibrium distribution where all individuals have equal fit-
ness, because otherwise some would move to increase their fitness, and where there
is no net movement at equilibrium, since no individual can improve its fitness by
moving. Since IFD reflects a movement strategy where individuals locate themselves
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in response to the presence of others, it can be viewed in the framework of game
theory (Cressman and Krivan 2010; Krivan et al. 2008; Krivan and Cressman 2009).
Such studies indicate that in many cases the strategies that should be ESS are those
leading to IFD. Those studies confirm the idea that the ideal free distribution is the
same as what would arise if movement was not allowed, which is consistent with the
formulation that we will use in this paper; see also Cantrell et al. (2007a).

The game theory approach is based on comparing payoffs at equilibrium, so it
does not address the mechanisms and dynamics that might lead to IFD. Those limita-
tions motivate the adaptive dynamics approach. An important observation arising from
this characterization of the IFD is that one strategy that can produce it in population
dynamical models is the strategy of no dispersal at all.

Our analysis builds on the ideas developed in Cantrell et al. (2007a), Hastings
(1983), McPeek and Holt (1992). Our models consider an arbitrary number of com-
peting populations dispersing among an arbitrary number of patches. We examine both
simple Lotka—Volterra competition models and models that also explicitly incorporate
the dynamics of both the competitors and their common resource. Our results show not
only that strategies producing an IFD resist invasion by other strategies (that is, they
are evolutionarily stable) but also that they can invade non-IFD strategies and replace
them. In other words, such a strategy is also a neighborhood invader strategy (NIS).
(See Apaloo et al. 2009 for a discussion of terminology.) The concepts from adaptive
dynamics such as CSS and NIS are typically introduced for strategy dynamics (e.g.
dispersal strategies) when population densities are at equilibrium values for the cur-
rent strategy distribution (see references Dieckmann and Law 1996; Geritz et al. 1998;
Metz et al. 1996) whereas the dynamical systems in current paper emphasize popula-
tion dynamics at fixed dispersal strategies. Our approach to understanding the stability
of strategies is to show that if a resident population uses a certain class of strategies,
it will achieve a distribution that is an ecologically stable equilibrium (ESE) (Vincent
and Brown 2005; Vincent et al. 1996) relative to invasion by any competitor using
any strategy outside that class. Because populations using strategies in this class can
resist invasion by any other strategy, we interpret the results as implying that this class
of strategies is noninvasible, which is a key aspect to evolutionary stability. Because
we examine the ecological stability of an equilibrium arising from a given strategy
relative to other populations using any other possible strategy, our results effectively
amount to a pairwise invasibility analysis.

This paper is organized as follows. In Sect. 2 we describe the mathematical models
and state the main results. Sections 3, 4, 5-6 are devoted to the proofs of our main
results. Finally in Sect. 7 we discuss the meaning of our results.

2 Model formulations and statement of result

In this section we describe our modeling approach, discuss our terminology, and for-
mulate our main results. We address two problems:

(1) determine when the dispersal strategy with no movement is evolutionarily stable;
(2) determine when an ideal free dispersal strategy is evolutionarily stable.
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2.1 Competition model for m-species

We consider a competition model in n patches, in which m-species compete for the
same resource, and these species have the same population dynamics but different
movement strategies.

Let uy; denote the population density of species k in patch i,1 < k < m and
1 < i < n, where m is the total number of species and » is the total number of
patches. We assume that m > 2 and n > 2. Let d{‘j denote the proportion of individu-

als of species k which move from patch j to patch i, where dzl} > 0 and a.’,", = 0. For
. each 1 < k < m, define the movement matrix Dy, for species k by

Dy = (d!"-) .
k Y/ 1<ijsn

We say that a matrix is irreducible if it is not similar to a block upper triangular matrix
with two blocks via a permutation.
Suppose that uy; satisfies

n

dug; k k M~ .
= > (@b — )+ fi{ D ), 1> 0, @1
J

i=1 =1

and uy; (0) > Oforeveryl <k <mand1 <i <n.

We assume that species interactions occur only within patches and functions f; are
only patch-dependent. We further assume that for every i, function f; is continuous
and strictly monotone decreasing in [0, co), and limy—, 400 f;(x) = —o0. Hence, if
fi(0) > 0, there exists a unique positive constant K; such that f;(K;) = 0. Define

Ny={1<i<n:fi(0)>0}, N.={1<i<n:fi(0)=<0}.

Biologically we can view N.,. as the union of source patches (high quality habitat) and
N_ as the union of sink patches (low quality habitat).

Setu = (i1, ..., wy), where g = (ugy, ..., up,)7 forevery 1 <k <m, and AT
denotes the transpose of a matrix A. Define

u* = u],0,...,0), (2.2)

where u} = (uj,,..., u“l‘n)T, and u}; = K; ifi € Ny, uj; = 0if i € N_. Note that
u* is an equilibrium of (2.1) when dl.lj = Qforevery 1 <i, j < n;i.e, when species 1
has no movement. Qur first main result is

Theorem 1 Suppose that both sets N, and N_ are non-empty, dil. =0forl<i, j<n,
and matrix Dy, is irreducible for every 2 < k < m. Then, the equilibrium u* of (2.1} is
globally asymptotically stable among all positive initial data; i.e., u* is locally stable
and
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i Ki, k=1,i€Ny;
l—l*frgo ui (1) = 0, otherwise.

Hastings (1983) considered a special case of (2.1), namely, m = 2 and the dispers-
als of both species are random; i.e., a’,"j = u L;j, where matrix (L;;) is non-negative,
symmetric and irreducible. This case describes random dispersal because the sym-
metric dispersal rates do not allow organisms to condition their dispersal on habitat
quality or other factors. The constant w is the dispersal rate for species k. He envi-
sioned that two phenotypes are competing for the same resource, and the mutant is
identical to the resident except for their random dispersal rates. Hastings’ result in
Hastings (1983) implies that if the environment is spatially heterogeneous but tempo-
rally constant (i.e., K; # K for some i # j and K; is time-independent for each i),
the mutant can invade when rare if and only if it is the slower diffuser. Hence, in terms
of the theory of adaptive dynamics (Dieckmann 1997; Dieckmann and Law 1996;
Diekmann 2003; Geritz and Gyllenberg 2008; Geritz et al. 1998; Metz et al. 1996),
Hastings’ result implies that zero movement rate is a convergent stable strategy (CSS).
Our Theorem 1 implies that zero dispersal rate (no movement) is an ESS in spatially
heterogenous but temporally constant environments, when at least one of the patches
is a sink; i.e., (u*, 0) is locally asymptotically stable. Furthermore, the strategy with
no movement can displace strategies with positive movement rate; see Remark 2.2 for
further discussions. Interestingly, if N_ is empty, zero dispersal rate may not be an
ESS anymore as the following remark shows.

Remark 2.1 If N_ is empty, i.e., f;(0) > 0 for every 1 <i <n, it is tempting to con-
jecture that

. Ki, k=1 1<i<n,
lim ugi (1) = .
1—>00 0, otherwise.

But such conjecture can be false. For example, assume that d{‘j = urL;j, wy = 0and

wi > 0fork > 2, Z’}z, Lij = ’}=1 Ljforeveryl <i <n.letc¢,2 <k <m,
be any positive constants satisfying > /', ck <minj<j<, K;. Define it = (iiy, ..., fin),
iy = (gl ... k)], where ig; is given by

n

K,»-—Zc,, k=1,1<i<n,
[=2

g =

Ck, 2<k<m, 1<i<n.

Then if is a positive equilibrium of (2.1). Since ¢ can be arbitrarily small and if = u*
when ¢ = 0 forevery k > 2, we see that u* is not locally asymptotically stable when
N_ is empty. O

Next we turn to another class of dispersal strategies which are evolutionarily sta-
ble, motivated by the works from Cantrell et al. (2007a), McPeek and Holt (1992).
If we restrict ourselves to the situation when N_ is empty, f;(x) == 0 has a unique
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positive equilibrium K; for every i. Following Cantrell et al. (2007a), we first give the
following definition:

Definition 1 Species & has an ideal free dispersal strategy with respect to
Ky, ..., Kp)if

n n
>k ={>di | Ki 2.3)
j=1 j=1

holds for every 1 < i < n. We say that species k does not have an ideal free dispersal
strategy with respect to (K1, ..., K,) if (2.3) fails to hold for some i

If species & has an ideal free dispersal strategy with respect to (K, ..., K,,), then
the system of equations for species k

% = Z (df}-ukj - dfiuki) +uki fi (i), >0 2.4)
J

has a unique positive equilibrium, precisely given by (K3, ..., K,,). When species k
is at this equilibrium, its fitness, which is measured by the per capita growth rate, is
equal to zero in all patches; moreover, the species has no net movement. In terms of
the ideal free distribution theory Fretwell and Lucas (1970), the spatial distribution
of species k at equilibrium is an ideal free distribution. A natural question is whether
an ideal free dispersal strategy is evolutionarily stable. A general approach was pro-
posed in Cantrell et al. (2007a) to address this question. It was shown in Cantrell et al.
(2007a) that under quite general conditions the only possible evolutionarily stable
dispersal strategies are ideal free ones. Furthermore, it was shown in Cantrell et al,
(20074a) that under certain conditions ideal free dispersal strategies are evolutionarily
stable, by constructing a Lyapunov functional. In this paper we construct a different
Lyapunov functional which will enable us to obtain more general results on the evolu-
tionary stability of both ideal free dispersal strategies and the dispersal strategy with
no movement.

For two-species (m = 2) and n-patch, we have the following result:

Theorem 2 Suppose that m = 2, N_ is empty, matrix Dy, is non-negative and irre-
ducible for k = 1,2. If species 1 has an ideal free dispersal strategy with respect
to (Ky,..., K,) and species 2 does not have an ideal free dispersal strategy with
respect to (K1, ..., Ky), then the equilibrium u* of (2.1) is globally asymptotically
stable among all positive initial data; i.e., u* is locally stable and

Hm ug; (1) =
100

Ki, k=1,1<i<n,
0, k=2,1<i<n.

Remark 2.2 Theorem | shows that no movement is evolutionary stable when at least
one of the patches is a sink. When all patches are sources, Theorem 2 implies that a
species with an ideal free dispersal strategy will outcompete any other species whose
dispersal strategy is not ideal free. In particular, ideal free dispersal strategies with
respect to (K7, ..., K,) are evolutionarily stable. It seems that the conclusions of
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Theorem 1 are due to the fact that irreducible movement forces some individuals to
move to sinks. If the “irreducibility” were restricted to movement among sources and
assuming that such restricted movement is an ideal free dispersal strategy with respect
to the carrying capacities of sources, we suspect that it is also evolutionarily stable.
m]

If two species both have ideal free dispersal strategies with respectto (K, ..., Ky),
it is not difficult to see that they can coexist. An immediate question for m competing
species (m > 3) is: if species 1 has an ideal free dispersal strategy with respect to
(K1, ..., K,) and none of the other species has an ideal free dispersal strategy with
respectto (K, ..., K,), can we still conclude that species 1 will drive other species to
extinction as in Theorem 27? It turns out that the answer involves a particular combina-
tion of dispersal strategies for multiple competitors which enables them to distribute in
space so that together they can exactly match the shared resource. To describe our gen-
eral results for m competing species, we introduce the notion of a joint ideal dispersal
strategy for arbitrarily number of species, which generalizes Definition 1 and seems
to be of independent interest. In this connection, set z?{fi = cll."} forevery i # j and
c;',", = - Z;z, dji forevery 1 <i < n. Let Dy denote the n x n matrix (&fj)lsi,/‘s:u
which is irreducible as matrix Dy is irreducible. Since (1, ..., l)ﬁk = (0,...,0),
by the Perron-Frobenius Theorem, zero is the dominant eigenvalue of Dy with left
eigenvector (1,...,1). Hence, again by the Perron-Frobenius Theorem, ﬁk has a

right vector ity = (g1, ..., ign)T (unique up to scalar multiplication) with strictly
positive entries. That is,

n n
S dbiy = (3t ) @

forevery 1 <i < n. Clearly, (2.3) means that species k has an ideal free dispersal
strategy with respect to (K7, ..., K,) if and only if i can be chosen as the vector
(Kl’ vy KI?)T‘

Definition 2 Given any integer / > 1, species 1, ...,/ have a joint ideal free dis-
persal strategy with respect to (K|, ..., K,;) if there exist non-negative constants
ct, 1 <k <1, such that

o
> iy = (K1, ..., Kp)" 2.6)
k=1

holds. We say that species 1, ..., have no joint ideal free dispersal strategy with

respect to (K, ..., K;) if there are no non-negative constants ¢, such that (2.6)

holds.

By (2.5) we see that when [ = 1, (2.6) is reduced to (2.3); i.e., for a single species,
the notion of a joint ideal free dispersal strategy is the same as that of an ideal free
dispersal strategy as defined in Definition 1. When [ > 2, rather interestingly, it may
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happen that none of the species 1, ...,/ can produce an ideal free distribution as a
single species but, as a combined effort of all species, a joint ideal free dispersal strat-
egy can produce the ideal free distribution for each species, as the following remark
shows.

Remark 2.3 If species 1, ..., [ have a joint ideal free dispersal strategy with respect
to (K, ..., Ky), then the system of equations for I species (namely, species 1, ..., /)

!

duy; .
_(.l_t’:i => (d{;.ukj —~ dj?,.uk,-) + ki fi (Z uk,-), 1<k<lt>0 (27
j

k=1

has a non-negative equilibriom & = (d;,..., %) given by iy = cpity, 1 < k < [.
When species 1,. ..,/ are at this equilibrium, the fitness of each species is equal to
zero in all patches:

! I
fi (Z‘7ki) = fi (ZCkﬁki) = fi(K;))=0, 1<i<n.
k=1 k=1

Moreover, (2.5) implies that

n n
Z(d{",-ﬁkj~d§iakf)=ck Dol — > db Jaw | =0, Vi<k<i
j j=1 j=1

(2.8)

ie., forevery 1 < k < [, species k has no net movement. Hence, a combination of
competitors can distribute themselves in space so that together they can exactly match
the shared resource. |

Our following result generalizes Theorem 2 to general i competing species:

Theorem 3 Suppose that N_ is empty and matrix Dy, is non-negative and irreduc-
ible for 1 < k < m. If species 1 has an ideal free dispersal strategy with respect to
(K1, ..., Ky) and species 2, ..., m have no joint ideal free dispersal strategy with
respect to (K, ..., Ky), then the equilibrium u* of (2.1) is globally asymptotically
stable among all positive initial data; i.e., u* is locally stable and

. Ki, k=1, 1<i<n;
lim oy (1) = ,
=00 0, otherwise.

Remark 2.4 Theorem 3 fails if species 2, ..., m has a joint ideal free dispersal strat-
egy with respect to (K1, ..., K,), even though species 1 has an ideal free dispersal
strategy with respect to (K|, ..., Kp,). To see this, let #; = (K|,..., K,)? and
Do ckily = (Ky,..., K;)T for some non-negative constants cx,2 < k < m.
Forany 0 < s < 1, set u™ = (u}*,...,u}"), where uit = s(Ky,..., KT and
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up* = (1 — s)cylir. Then u™* is an equilibria of (2.1). Since c; > 0 for at least some
2 < k < m, at least one of the species other than species 1 can coexist with species
1. As O < § < 1is arbitrarily and u™*|;—; = u™, we see that u* in Theorem 3 is not
even locally asymptotically stable. o

2.2 Consumer-resource models

Our results for the m-species competition model in #-patches can be extended to the
following consumer-resource model;

dR; R;
_c—lti = R; (r,' [1 - _r,i] ——;u”), t>0,

(2.9)
dur: 3
—Jtﬁ'— = Z (d,‘kj”kj - a'f*,-uki) +uki [8i(R) —di], >0,

J

where R; denotes the population density of the resource species in patch i, uy; denotes
the population density of the consumer species kinpatchi, 1 <k <mand1 <i <n.
The constants r;, 7;, and d; are assumed to be all positive forevery 1 < i < n. We
assume that foreach 1 < i < n, g;(x) is continuously differentiable, strictly monotone
increasing in [0, co) and g;(0) = 0. Define

Qe={l<i<sn:gm>d}, Q- ={12i<n:gy) <d).

Foreveryi € Q, set

-1,
K; :=r{1-—5‘-’—"——(‘—1’3]>0

T
Define

u™ = W, 0,...,0), (2.10)

where ul* 1= (i}, ..., u]*j:)T, and u}f = K; fori € Q, ujf =0forieQ_.
Theorem 4 Suppose that both sets Q. and Q2 are non-empty, d; # g;(t;) for every
1<i< n,cli'j = 0 for every | < i,j < n, and matrix Dy is non-negative and
irreducible for every k > 2. Then, ast — oo, R;(t) — min{z;, gl.'l(di)} for every
1 <i<n,andu(t) — u**

Similarly to Theorem 1, Theorem 4 shows that the dispersal strategy with no move-
ment is an ESS for the consumer species in the consumer-resource model (2.9). We
do not know whether Theorem 4 still holds if the resource species is also mobile.

Similarly to Theorem 2, we have the following result for the consumer-resource
model (2.9).
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Theorem 5 Suppose that K; > 0 for every 1 <i < n (i.e.,, Q- is empty) and matrix
Dy, is irreducible for every k > 1. If species 1 has an ideal free dispersal strategy
with respect to (K1, ..., Ky) and species 2, . .., m have no joint ideal free dispersal
strategy with respect to (K1, ..., K,), then, ast — oo, Ri(t) — gi'l(di) Jor every
I <i<nandu(t) — u**.

Again, Theorem 5 might fail if species 2, ..., m have a joint ideal free dispersal
strategy with respect to (Ky, ..., Kp).

Note thatif species 1 has an ideal free dispersal strategy withrespectto (Ky,. . ., Kp),
we can choose if; = (K1, ..., K,)T. Therefore, for the two-species case (i = 2), we
have

Corollary 2.1 Suppose that m = 2,K; > 0 for every 1 < i < n, matrix Dy is
non-negative and irreducible for k = 1, 2. If species 1 has an ideal free dispersal
strategy with respect to (K1, ..., K,) and species 2 does not have an ideal free dis-
persal strategy with respect to (K1, ..., Ky), then, R;(t) — g ") ast — oo for
everyl <i < n, and

. Ki, k=1,1<i<n,
lim up(t) = i
100 0, k=2, 1<i<n.

3 Proof of Theorem 1

This section is devoted to the proof of Theorem 1. Theorem 1 is a consequence of
Lemmas 3.1, 3.2 and 3.4 and Theorem 6.

Recall that u = (uy,...,uy) and ux = (g1, ..., k)7 for every 1 <k < m,
where uy; € R.Define B i= {(u : uyy >0, V1 <k <m 1 <ic< n} and
G={ueB:u;>0VieN,)

Define V : G — Rby

n m
V) =D > wu— . Kiln(uyy).
i=1 k=l ieNy

Foreachl <k <mand1 <i <n, define

m
Fri(u) = Z (dikjukj - dfiuk,‘) + up; fi (Z Lt/i).
J /=1
Then forany u € G,
m n

) vV
Vu) := Z Z M(M)Fk,'(u). (3.1

k=1 i=1 !
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Lemma 3.1 Suppose that dilj = Qforl <i,j < nand f; is strictly monotone

decreasing. Then V () <0, and V() = 0 if and only if

n
Dun=K YieNy w;=0VieN_ ,1<l<m (3.2)
=1 .

Proof By the definition of V,8V/0uy = 1for2 <k <mand1 < i < n;
0V /ouy; = 1fori e No; 8V /0uy; = 1 — K;/uy; fori € N4. Hence, by (3.1),

m

V) = ZZFW) - > Fuu)-

k=1 i=I ieNy

Since

1
k k
Z (d Uk — dj-iuk,-) =0
ij=1
forevery 1 <k < m, we have

ZZFM(M) Zzukifi( uli)
I=1

k=1 i=1 k=1 i=1

"2 (&) (E) 2 ) (5

Asdl; =0for1 <i,j<n,

> R —=> Kifi (Zul,)

ieNy ieNy

Hence,

o [(E) () EEn)

Note that, as f; (K;) = 0 and f; is strictly monotone decreasing for every i € N,

() (G Fe) - o) e o

where equality holds if and only if > )2 ; wi; = K;, Vi € Ny.
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Foranyi € N_, since f;(0) <0,

(E)o(E) )

where equality holds if and only if Do = 0; thatis,u;; =0,V1<l<m,ie
N_. Hence, V(1) < 0 for any u € G, and V() = 0if and only if (3.2) holds true.
O

Recall that ™ is defined as in (2.2). The local stability of u* is a direct consequence
of Lyapunov’s stability theorem, Lemma 3.1 and the following resulit:

Lemma 3.2 V(u) = V(") forany u € G, and equality holds for some u € G if and
only ifu = u*.

Proof 1t suffices to notice that for any u € G,

V() — Vu®) = Z |:l£1i — Ki— K;iln (Eﬂ)} Z uy; + Zzukl

ieNy ieN- i=| k=2

It is well known that for any g > 0, the function x — a — a In(x/a) is strictly positive
in (0, @) U (@, oo) and is equal to zero at x = a. This shows that V () is strictly larger
than V (u*) for any u # u*. O

The asymptotic stability of u* does not follow from Lyapunov’s stability theorem
since the set where V vanishes contains points other than u*, It turns out LaSalle’s
invariant principle (LaSalle 1960) is a proper tool to establish the global convergence
of solutions of (2.1) to u™*. There are various versions of LaSalle’s invariant principle
for ODEs and we shall use the following one:

Theorem 6 Consider the system of differential equations

d X
= = f(x),
where f:R* — R" is continuous. Suppose that V : G ¢ R* — R satisfies:

(i) V is continuous on G;
(ii) V is not continuous at ¥ € G (the closure of G) implies that limy 5 reg V(x) =
+00;
(iii) VV - f <0inG.

Let

={x|V(x) =0, x € G)
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and M’ be the largest invariant set in M. Then every bounded (for t > Q) trajectory
of x = f(x) which remains in G for t > 0 tends to the set M’ as t — +o00,

Theorem 6 was formulated as Theorem 1.2 of Lu and Wolkowicz (1992).

Suppose that L;; > 0for 1 <, j < n and the n x n matrix (L;;) is irreducible. By
the Perron-Frobenius Theorem, there exists a vector w* := (wj, ... )T (unique
up to scalar multiplication) with strictly positive entries such that

forevery 1 <i < n. We have the following result (see Arino 2008, Theorem 2.2):

Lemma 3.3 Suppose that Li; > 0 for 1 < i, j < n and (L;j) is irreducible. Let
wi(t), 1 i < n, satisfy

dw;
'?zf = Z Lijwj — Ljw;), t>0, w;i(0)=>0. (3.3)
j._

Then, foreach 1 <i < n,

lim wi() = o— Zw,(O)

le

Lemma 34 Let M = {u| V() =0, u € G). The largest invariant subset, M, of
M is {u*}).

Proof Note that

m ’
M=3ueB: Zu/,zK, V16N+,u;,-0 VzeN_,l<l<m]
f==1

Let u(0) € M'. Then, u(r) € M foranyt > 0;ie., > /o, u;(t) = K; Vi € N4 and
upi(t) = O foreveryi € N_,1 <[ < m. We observe that uy; f,(z, i i) = 0 for
everyl <i <nandl <k <m.Fori € N_, this follows from uy; (t) = 0 for every
i e N_,1 <l <m Forie Ny, it follows from f;(K;) = 0 and Z, yui(t) = K;
for every i € Ny that f; (3L, ui) = fi(K;) = 0. Therefore, forevery 1 <i <n
and 1 <k <m,

i k k
—_— = (d Ugj— dj,-uk,-)
i

fori > 0. We show that u;;(0) = Oforevery 1 <i <nand2 <k < m.If not,
suppose that u;;(0) > 0 for somei € {1,...,n) and some k € {2,...,m]}. Then,
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Zj‘:! Ui (@) > 0. Since matrix ((l{‘j) isirreducible fork > 2,by Lemma 3.3, uy; (t) —
ajily; forevery 1 <i < nast — oo, where a; = 3>, ug;(0)/(3; itg;) > 0. This
contradicts ug j (t) = 0 forevery j € N... Hence, 114; (0) = O forevery | <i < nand
2 <k < m. Since X)L, u;(t) = K; forevery i € Ny, we obtain uy;(0) = K; for
every i € N4. Recall that uy;(0) = 0 for every i € N_. Therefore, u(0) = u*. This
completes the proof. 0

4 Proof of Theorem 3

This section is devoted to the proof of Theorem 3. Theorem 3 is a consequence of
Lemmas 4.1, 4.2 and 4.3 and Theorem 6.

We first introduce a class of matrices which is a natural generalization of symmet-
ric matrices. A n x n matrix A is called line-sum-symmetric if for every 1 <i < n,
the sum of the elements in the i-th row of A equals the sum of the elements in the
i-th column of A. The following result gives a classification of line-sum-symmetric
matrices (Eaves et al. 1985; Corollary 3).

Theorem 7 Let A be an n x n nonnegative matrix. Then A is line-sum-symmetric if
and only if

Z alj_ e Z alj “4.1)

i, j=1 J i, j==1

Jorall x; > 0,1 < i < n. Moreover, if A is irreducible and line-sum-symmetric,
equality in (4.1) holds if and only if all the coordinates of x = (xy, ..., x,) coincide,
ie,xi=xjforanyl <i,j <n,

In this section'we define B = {u : upy > 0, V1 <k <m, 1 <i < n}and
G={ueB:u;>0VYi}.DefineV:G - Rby

V) = iZug, ZK,ln (u11).

i=1 k=1

Lemma 4.1 Suppose that Zl (dl a(l K;) = 0 foreveryl <i <n,ie, the
species 1 is adopting an ideal free dszersal strategy with respect to (K1, ..., Ky).
Then V(i) < 0, and V) = 0 if and only if there exists some k > 0 such that
uy =«Kjand >, u; = (1 —k)K; forevery1 <i <n.

Proof Recall that V (i) is defined as in (3.1). Similarly to the proof of Lemma 3.1,
after some calculations we have

. n in m n K
V) = Z(Z Ui = Ki)fi (Z uu) - Z 'd,,zu, Z Kidj;
i=1 \l=l I=1

ij=1 i j=1
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Note that, as f;(K;) = 0 and f is strictly monotone decreasing, for every i,

(50)- ) [(50) o) )

where equality holds if and only if >/ wy; = K;, V i.
Set hjj = d ;K ;. By our assumption, (h;;) is line-sum-symmetric, non-negative
and ureduc:lble Set b; 1= K;/uj; > 0. Then by Theorem 7,

n

Z ulj ZK, Zh‘! Zh,1>0

i.jl i,j=1 i,j=l1 i,j=1

where equality holds if and only if b; = bj forevery 1 <4, j < n;ie, uLi/Ki =«
forsome ¥ > Qandevery 1 <i < n. Hence V(u) < 0. Moreover, V(u) = 0 if
and only if for every 1 < i < n, 3L, u;; = K; and there exists some ¥ > 0
such that u1;/K; = « for some « > 0, which hold if and only if uy; = «K; and
Doieou = (1 —Kk)K; forevery 1 <i <n. O

Recall that u™ is defined as in (2. 2) The local stablhty of u* is a direct consequence
of Lyapunov’s stability theorem, Lemma 4. ] and the following result:

Lemma 4.2 V(u) > V(u*) forany u € G, and equality holds for some u € G if and
only ifu = u*.

Proof It suffices to notice that for any u € G,

V(u)—V(u*):Z,:[ul, - K; — K; ln(“')}—{—ZZuk,,

i=] i=1 k>2

anduy; — K; — K;In T“ > Ofor any u); > 0, where the equality holds if and only if
uy =K. (]

We apply LaSalle s invariant principle to estabhsh the global convergence of solutions
of (2.1) to u*

Lemma 4.3 Suppose that 3, j (d,-lj K;— d}i Ki) =0foreveryl <i <n, Dy isirre-
ducible forevery1 < k < m, and there exisfno non—negal‘ivg constants T, 2 < k < m,
suchthatiiy = >y tilk. Let M := {u| V(u) = 0, u € G}. Then, the largest invari-
ant subset M of M is (u* = @}, 0,...,0):u}; =K; >0,V1<i<n)

Proof By Lemma 4.1,

‘ m
M:[u €B:uy=xki, > wi=(-KK;, 15i5n].
[=2
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Let u(0) € M’ Then, u(t) € M forany t > 0;ie, u;(t) = «@)K;, and
Dou(t) = (1 — k()K; for 1 < i < n. This implies that f; oL wi(n) =
Ji(K;) =0forevery 1 <i < n. Therefore, forevery 1 <i <nand1 <k <m, uy
satisfies

dug; i k
f =§j:(dijukj — i), 1>0. (4.2)

Substituting uy; =« (t)K;, 1 <i <n, into the Eq. (4.2), as Zj (dilj K; —d}i K,:) =0,
we have k’(1)K; = 0, i.e., « is a constant. In particular, this implies that

D oun(t) = (1 -0k (4.3)

=2

for 1 <i < n. Since uy; are all non-negative, we see that k¥ € (0, 1].

We claim that « = 1. To establish our assertion, we argue by contradiction: if
not, suppose that « < 1. By Lemma 3.3, for every & > 2, im0 ug; (t) = ayiig;,
where ag 1= > uy; (0)/(Zj L”zkj). By letting t — oo in (4.3) wehave >, ayiiy; =

(1 = k)Kj forevery 1 <i < n. Since ¥ < 1, we have 3 )" ,[a;/(1 — k)]l = K;
for every 1 < i < n. Thatis, > ,[a;/(1 — k)] = ity since fi; can be chosen

as the vector (K1, ..., K,). This contradicts our assumption. Therefore, ¥ = 1. In
particular, (4.3) implies that u;; (1) = O forevery 2 </ <mand 1 <i < n. Also, we
have u); (t) = K;. This proves that u(¢) = u* and thus completes the proof. ]

5 Proof of Theorem 4

This section is devoted to the proof of Theorem 4. Theorem 4 is a consequence of
Lemmas 5.1, 5.2 and Theorem 6.

In this section we define B := {(R,u) : R; > 0, uy; >0, VIi<k<m, 1<i<n)
and G ={(R,u) e B: R; >0V, u;; >0Vi € Q). DefineV:G — Rby

n m

VR W) =" > ui— D Kiln@u) + Y Gi(Ry),

i=1 ksl i€y i
where G; is a scalar function satisfying G;(0) == 0 and

Gi(x) = &i(x) — min{g;(%;), di}’ x>0,
X

forevery 1 <i <n.Asg;is C' and g;(0) = 0, the functions G; behave like negative
multiples of the logarithm near 0 and hence V will satisfy hypothesis (ii) of Theorem 6.
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Forl <i <un,set

R; .
Hi(R,u) = R; (r,- [1 - —ri—} - Zu/,).

Forl<k<mandl <i <n,set

PR,y = 3 (g — d¥une ) + i [gi(R) = .
J
Then for any (R, u) € G,

V(R u) = Z-———(R u)H; (R, u)+ZZ

i=] k=1 i=1

(R w). (5.1

Lemma 5.1 Suppose that d; # gi(7;) forevery1 < i < n and d L = 0 for every
1 <1i,j <n Then, V(R,u) < Oforany (R,u) € G. Fmthermore, V(R u) =0if

and only if
Ry =minfg7 (), 5} YI<i<n wi=0VYi<i<m YieQ_. (52)

Proof By-the definitionof V, 8V /0uy; =1for2 <k <mand1<i<n;dV/du);; =1
fori € 2_;8V/0uy; = 1—K;/u); fori € Q4. Hence, as in the proof of Lemma 3.1,

Z %Fk-—Z(le/,)[g,(R)—d}“ ZIC[g'(R' —dil-

k=1 =1 I=1 ey
Since
i‘_’_.z gi(R;) — min{g;(w;), d;}
OR; R; ’
we obtain

ZQ—V-H, i[g,(m—mm{g,(r,)dn [ (1—%)-—(2:11,)]

) = 2_lai(R) —di] {r.-( -——) (iun)]

lEQ+
Rl m
+ D> [gi(R) — gi(w)] [n’ (1 - —T-j) - (Z uu)] :
e ! =1
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Hence, after some direct calculations,

VR == 3 g (R) ~ di) [Ri ~ 877 (@)

IGQ+

—Z [gl(r,)——g,m)][n— il

zeKL

- (Z u/,)[dt 2i(z)].

e

Since g; is strictly monotone increasing,

> lR) —dil[Ri— g7 )] 2 0

i€y
and equality holds if and only if R; = g () for every i € S2... Similarly,

> lgi(m) — gi(R)I [z — R = 0,

ief2-

and equality holds if and only if R; = 1; for every i € 2. Finally,

Z (Z "li)[di - gi(t)] =0,

ief- \I=I
and equality holds if and only if uy; = 0 for every I and every i € 2_. Hence,
V(R,u) <0, and V(R,u) =0ifand only if (5.2) hold O

Set R* = (R{,..., R}), where R} = mm{g,. (d;), 7;}. Recall that »** is defined
as in (2.10).

Lemma 5.2 Suppose that Q24 and S are non-empty, d; # gi(%) for every 1 <
i <n, dilj = 0 forevery 1 < i, j < n and Dy is irreducible for every k > 2. Let

={(R,w)| V(R,u) =0, (R, u) € G). Then, the largest invariant subset M' of
Mis {(R, u) = (R*, u™)}.

Proof Note that by Lemma 5.1,
={(Ru):R=R*, u;=0 VieQ_,1<l<m}.
Let (R(O), 1(0)) € M’. Then, R(t) = R* forany r > 0, and uy; (t) = O for every

i € Q- andl <k < m.Hence, fori € Q, gi(R;i(t)) — d; = 0. This implies that for
everyi € Qiand1 <k <m,

T = (b — A}, 1> 0. (5.3)
j
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Since uy; (f) = O forevery 1 < k < m andi € Q_, we see that (5.3) holds for every
1<k<mandl <i <n. Fork > 2, as matrix Dy is non-negative and irreducible,
by Lemma 3.3 and ug; (1) = O forevery 1 <k <m andi € 2_, we see that the only
possibility is that uy; = Oforevery2 <k <mandl <i <n. '

By the equation of R; and R;(t) = R}, we have

m R*
Z“” =r; (1 - ——'—)
I=1 K

forevery 1 <i < n.Asuy = 0foreveryi € Q4 and ! > 2, we have u); = K; for
i € Q. Asuy; =0foreveryi € ., we see that u(r) = u™ for all ¢, This completes
the proof. O

6 Proof of Theorem 5

This section is devoted to the proof of Theorem 5. Theorem 5 is a consequence of
Lemmas 6.1, 6.2 and Theorem 6. :
In this section we define B = {(R,u) : R; >0, uy; >0, V1i<k<m, 1<i<n)}

andG={(R,u)e B:R; >0, uj; >0Vi}.
- Recall that K; is defined by

1,“1 :
X, =,_,.(1_s;_<sfz_>_),
Ti

which is positive for every i if we assume that g;(1;) > d; for every i.
Define V : G — Rby :

n mn " n
VIR ) = D" > k= Kiln (i) + D Gi(Ry),
i=1

i=1 k=1 i=1

where G; is a scalar function which satisfies

Y e l
Gi(x) = 5—%——‘—— Gi(0) = 0.
Recall that V is defined as in (5.1).
Lemma 6.1 Suppose that gi(ti) > d; and 3} d,.’jICj = '}zld}il(l,- for every

1<i<nThenV(R,u) < 0 for (R, u) € G. Furthermore, V(R, u) = 0 if and only
ifR; =g ! (d;) for every 1. < i < n and there exists some constant & > 0 such that
uy =&k foreveryl <i <n.
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Proof Similar to the proof of Lemma 5.1, we have
n e n ’C
VR, u) == =lgi(R) = ][R —g ()1 — | > ———d‘uu Z Kid}; |.
=1 G i j=1 ij=1
Note that
[gi (R)) — iR — g7 (d)] = 0,

where equality holds if and only if R; = g~ 1) for every ] <i <n.
Set h;; = d}j K. By assumption on the matrix (dl.l.), the matrix (%;;) is line sym-
mefric, non-negative and irreducible. Set b; ;= K;/uy; > 0. Then by Theorem 7,

n
Z a’,Ju;j ZIC = Zh,,—-— Zhu >0,
i j= l i,j=1 i, j=1 i j=1

where the equality holds if and only if b; = b; for every 1 < i, j < n. Hence,
V(R,u) < 0 for (R,u) € G,and V(R,u) = Oif and only if R; = g7 (d;) for
every 1 <i < n and there exists some constant ¥ > 0 such that u); = «X; for every
1<i<n. O

Let M := {(R, u)| V(R,u) =0, (R,u) € G). By previous lemma, we see that
M is given by

{(R u) € B:R; —-g”l(d)V1<l<n, u/Ki =uyj/KjV1<i,j Sn].

Set R* = (R}, ..., R*), where R} = gi'] (d;). Recall that u™* is defined as in (2.10).

Lemma 6.2 Suppose that > j (dille i d},.lC,-) = Oforeveryl <i <n,Dyis
irreducible for every 1 < k < m, and there exist no non-negative constants 1,2 <

k < m, such that ity = Z?:Z Tiiig. Then, the largest invariant subset M’ of M is
{(R,u) = (R*, u™)).

Proof Let (R(0), u(0)) € M. Then, (R(?),u(t)) € M forany t > 0;ie., R;(t) =
& (d ) for every i and there exists some «(t) such that uy; (t) = «(t)K; for every i.
By the equation of uy; and R; () = g/~ (a.’,), foreveryl <i <nandl1 <k <m,uy
satisfies

ki (dk Upj — dj‘fiuk;) , >0 6.1
J

Substituting uy; = k()K;, 1 < i < n, into (6.1), as Zj (dileCj — d}iIC,') = 0, we

have «’(1)K; = 0, i.e., «c is a constant. By the equation for R; and R; = gi‘l(d,'), we
have >, uy;i (1) = K; for every i. Hence,
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m
2 mi() = (1= 0K 62)
=2
for 1 <i < n. Since uy; are all non-negative, we see that « € (0, 1].
We claim that ¥ = 1. To establish our assertion, we argue by contradiction: if
not, suppose that ¥ < 1. By Lemma 3.3, for every k > 2, lim;—, o0 i (£) = ayily;,

where ag == >, upi (0)/(Zj L?kj). By letting 1 — oo in (6.2) we have D> L, ajiiy; =

(1 — k)K; forevery 1 < i < n.Since k < 1, we have > ;% [a;/(1 — )ity = K;
forevery 1 < i < n. Thatis, D> ) o[a;/(1 — k)] = i) since ii; can be chosen as
(K1, ..., Ky) (up to a positive scalar multiplication). This contradicts our assumption,
Therefore, ¥ = 1. In particular, (6.2) implies that u;;(t) = Oforevery 2 <[ < m
and 1 < i < n. Also, we have uy;(¢t) = K;. This shows that u(t) = u** and thus
completes the proof. ' o

7 Discussion

All of our results are set in the context of discrete-diffusion models on a network
consisting of an arbitrary but finite number of patches, under the assumption that all
admissible dispersal strategies other than no dispersal at all result in positive popula-
tion densities in all patches. In all cases we consider a situation where an arbitrary but
finite number of populations that are identical in every aspect except for their dispersal
strategies compete for a common resource. We consider both models for just the com-
petitors and models that include the dynamics of both the competitors and a shared
resource. In all cases we conclude that if one competitor is using a strategy that pro-
duces an ideal free distribution, and no other combination of competitors use strategies
that produce an ideal free distribution for their combined densities, then the compet-
itor using the ideal free dispersal strategy will exclude all others. If there is another
combination of competitors that distribute themselves in space so that together they
can exactly maich the shared resource, that combination functions like another single
competitor using an ideal free dispersal strategy. Such a combination of competitors
could be said to be using a joint ideal free dispersal strategy. Our results imply that
this would allow them to coexist with other single competitors using IFD strategies. In
the case of pairwise competition, the competitor with the IFD dispersal strategy will
always exclude the other competitor if the other competitor uses a non-IFD strategy.
(If two or more competitors use strategies that can produce ideal free distribution then
they can coexist in a neutrally stable state.) We conclude that strategies which produce
an ideal free population distribution are evolutionarily stable relative to strategies that
donot. Since a population using an ideal free dispersal strategy can invade and exclude
populations using other strategies, we can conclude that ideal free dispersal is in some
sense a global neighborhood invader strategy (NIS) (see Apaloo et al. 2009).

Our models lead to different specific conclusions in the cases of those environments
that include sink habitats versus those that do not. Recall that we consider classes of
strategies that lead to positive densities on all patches if there is any dispersal at all. In
the case of environments containing sinks there is no such strategy leading to an IFD,
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so the only ESS is the strategy of no dispersal at all, and that strategy is evolutionarily
stable. That conclusion is consistent with the results of Dockery et al. (1998), Hastings
(1983). In the case of environments without sinks, there is a continuum of IFD strate-
gies which can be characterized by an algebraic relationship between patch qualities
and dispersal rates between patches. In that case, any IFD strategy is an ESS and an
NIS versus any set of strategies within which no combination of other populations can
achieve an IFD. In sitvations where more than one population can achieve an IFD,
their dispersal strategies can coexist and are mutually neutrally stable.
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